Treffer: Material Space Texturing

Title:
Material Space Texturing
Contributors:
Geometry and Lighting (ALICE), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), School of Electrical and Computer Engineering - Georgia Insitute of Technology (ECE GeorgiaTech), Georgia Institute of Technology [Atlanta]
Source:
Computer Graphics Forum. 28(6):1659-1669
Publisher Information:
CCSD; Wiley, 2009.
Publication Year:
2009
Collection:
collection:CNRS
collection:INRIA
collection:INPL
collection:INRIA-LORRAINE
collection:LORIA2
collection:INRIA-NANCY-GRAND-EST
collection:TESTALAIN1
collection:UNIV-LORRAINE
collection:INRIA2
collection:LORIA
collection:INRIA-300009
collection:INRIA-ETATSUNIS
collection:AM2I-UL
Original Identifier:
HAL:
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISSN:
0167-7055
1467-8659
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1467-8659.2009.01423.x
DOI:
10.1111/j.1467-8659.2009.01423.x
Accession Number:
edshal.inria.00432402v1
Database:
HAL

Weitere Informationen

The definitive version is available at www.blackwell-synergy.com
Many objects have patterns that vary in appearance at different surface locations.We say that these are differences in materials, and we present a material-space approach for interactively designing such textures. At the heart of our approach is a new method to pre-calculate and use a 3D texture tile that is periodic in the spatial dimensions (s; t) and that also has a material axis along which the materials change smoothly. Given two textures and their feature masks, our algorithm produces such a tile in two steps. The first step resolves the features morphing by a level set advection approach, improved to ensure convergence. The second step performs the texture synthesis at each slice in material-space, constrained by the morphed feature masks. With such tiles, our system lets a user interactively place and edit textures on a surface, and in particular, allows the user to specify which material appears at given positions on the object. Additional operations include changing the scale and orientation of the texture. We support these operations by using a global surface parameterization that is closely related to quad re-meshing. Re-parameterization is performed on-the-fly whenever the user's constraints are modified.