Treffer: From spider robots to half disk robots

Title:
From spider robots to half disk robots
Contributors:
Geometry, Algorithms and Robotics (PRISME), Centre Inria d'Université Côte d'Azur, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source:
IEEE International Conference on Robotics and Automation. :953-958
Publisher Information:
CCSD; IEEE, 1994.
Publication Year:
1994
Collection:
collection:INRIA
collection:INRIA-SOPHIA
collection:INRIASO
collection:INRIA_TEST
collection:TESTALAIN1
collection:INRIA2
collection:UNIV-COTEDAZUR
collection:INRIA-300009
Subject Geographic:
Original Identifier:
HAL:
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00442776v1
Database:
HAL

Weitere Informationen

We study the problem of computing the set F of accessible and stable placements of a spider robot. The body of this robot is a single point and the legs are line segments attached to the body. The robot can only put its feet on some regions, called the foothold regions. Moreover, the robot is subject to two constraints: Each leg has a maximal extension R (accessibility constraint) and the body of the robot must lie above the convex hull of its feet (stability constraint). We present an efficient algorithm to compute F. If the foothold regions are polygons with n edges in total, our algorithm computes F in O(n^2 log n) time and O(n^2 alpha(n)) space where alpha is the inverse of the Ackerman's function. Omega(n^2) is a lower bound for the size of F.