Treffer: NumGfun: a Package for Numerical and Analytic Computation with D-finite Functions
Title:
NumGfun: a Package for Numerical and Analytic Computation with D-finite Functions
Authors:
Contributors:
Algorithms (ALGORITHMS), Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), This research was supported in part by the MSR-INRIA joint research center., Stephen M. Watt
Source:
ISSAC - International Symposium on Symbolic and Algebraic Computation. :139-146
Publisher Information:
CCSD; ACM, 2010.
Publication Year:
2010
Collection:
collection:INRIA
collection:INRIA-ROCQ
collection:INRIA_TEST
collection:TESTALAIN1
collection:INRIA2
collection:INRIA-ROCQ
collection:INRIA_TEST
collection:TESTALAIN1
collection:INRIA2
Subject Terms:
D-finite functions, linear differential equations, certified numerical computation, bounds, Maple, ACM: I.: Computing Methodologies, I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, I.1.2: Algorithms, [INFO.INFO-SC]Computer Science [cs], Symbolic Computation [cs.SC], [INFO.INFO-AO]Computer Science [cs], Computer Arithmetic
Subject Geographic:
Original Identifier:
ARXIV: 1002.3077
HAL:
HAL:
Document Type:
Konferenz
conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/arxiv/1002.3077; info:eu-repo/semantics/altIdentifier/doi/10.1145/1837934.1837965
DOI:
10.1145/1837934.1837965
Access URL:
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/publicdomain/zero/1.0/
URL: http://creativecommons.org/publicdomain/zero/1.0/
Accession Number:
edshal.inria.00456983v2
Database:
HAL
Weitere Informationen
This article describes the implementation in the software package NumGfun of classical algorithms that operate on solutions of linear differential equations or recurrence relations with polynomial coefficients, including what seems to be the first general implementation of the fast high-precision numerical evaluation algorithms of Chudnovsky & Chudnovsky. In some cases, our descriptions contain improvements over existing algorithms. We also provide references to relevant ideas not currently used in NumGfun.