Treffer: The readability of Path-Preserving Clusterings of Graphs

Title:
The readability of Path-Preserving Clusterings of Graphs
Contributors:
Graph Visualization and Interactive Exploration (GRAVITE), Université Sciences et Technologies - Bordeaux 1 (UB)-Centre Inria de l'Université de Bordeaux, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), Clique Strategic Research Cluster (Clique), University College Dublin [Dublin] (UCD), Department of Computing Science, University of Glasgow, Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), G. Melançon and T. Munzner and D. Weiskopf
Source:
Computer Graphics Forum. 29(3):1173-1182
Publisher Information:
CCSD; Wiley, 2010.
Publication Year:
2010
Collection:
collection:CNRS
collection:INRIA
collection:ENSEIRB
collection:INRIA-BORDEAUX
collection:UNIV-BORDEAUX
collection:INRIA_TEST
collection:TESTALAIN1
collection:LABRI-MABIOVIS
collection:TESTBORDEAUX
collection:INRIA2
collection:INRIA-ROYAUMEUNI
collection:UNIVERSITE-BORDEAUX
Original Identifier:
HAL:
Document Type:
Zeitschrift article<br />Journal articles
Language:
English
ISSN:
0167-7055
1467-8659
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1467-8659.2009.01683.x
DOI:
10.1111/j.1467-8659.2009.01683.x
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00471432v1
Database:
HAL

Weitere Informationen

Graph visualization systems often exploit opaque metanodes to reduce visual clutter and improve the readability of large graphs. This filtering can be done in a path-preserving way based on attribute values associated with the nodes of the graph. Despite the extensive use these representations, as far as we know, no formal experimentation exists to evaluate if they improve the readability of graphs. In this paper, we present the results of a user study that formally evaluates how such representations affect the readability of graphs. We also explore the effect of graph size and connectivity in terms of this primary research question. Overall, for our tasks, we did not find a significant difference when this clustering is used. However, if the graph is highly connected, these clusterings can improve performance. Also, if the graph is large enough and can be simplified into a few metanodes, benefits in performance on global tasks are realized. Under these same conditions, however, performance of local attribute tasks may be reduced.