Treffer: Random polynomials and expected complexity of bisection methods for real solving

Title:
Random polynomials and expected complexity of bisection methods for real solving
Contributors:
Department of Informatics and Telecomunications [Kapodistrian Univ] (DI NKUA), National and Kapodistrian University of Athens (NKUA), Laboratoire Jean Alexandre Dieudonné (JAD), Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS), Geometry, algebra, algorithms (GALAAD), Centre Inria d'Université Côte d'Azur, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS), Department of Computer Science [Aarhus], S. Watt
Source:
ISSAC. :235-242
Publisher Information:
CCSD, 2010.
Publication Year:
2010
Collection:
collection:UNICE
collection:CNRS
collection:INRIA
collection:INRIA-SOPHIA
collection:INRIASO
collection:DIEUDONNE
collection:INRIA_TEST
collection:TESTALAIN1
collection:INRIA2
collection:DIEUDONNE-EDP-AN
collection:UNIV-COTEDAZUR
Subject Geographic:
Original Identifier:
ARXIV: 1005.2001
HAL:
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/arxiv/1005.2001; info:eu-repo/semantics/altIdentifier/doi/10.1145/1837934.1837980
DOI:
10.1145/1837934.1837980
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00482722v2
Database:
HAL

Weitere Informationen

Our probabilistic analysis sheds light to the following questions: Why do random polynomials seem to have few, and well separated real roots, on the average? Why do exact algorithms for real root isolation may perform comparatively well or even better than numerical ones? We exploit results by Kac, and by Edelman and Kostlan in order to estimate the real root separation of degree $d$ polynomials with i.i.d.\ coefficients that follow two zero-mean normal distributions: for $SO(2)$ polynomials, the $i$-th coefficient has variance ${d \choose i}$, whereas for Weyl polynomials its variance is ${1/i!}$. By applying results from statistical physics, we obtain the expected (bit) complexity of \func{sturm} solver, $\sOB(r d^2 \tau)$, where $r$ is the number of real roots and $\tau$ the maximum coefficient bitsize. Our bounds are two orders of magnitude tighter than the record worst case ones. We also derive an output-sensitive bound in the worst case. The second part of the paper shows that the expected number of real roots of a degree $d$ polynomial in the Bernstein basis is $\sqrt{2d}\pm\OO(1)$, when the coefficients are i.i.d.\ variables with moderate standard deviation. Our paper concludes with experimental results which corroborate our analysis.