Result: Least Squares Subdivision Surfaces

Title:
Least Squares Subdivision Surfaces
Contributors:
Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), Visualization and manipulation of complex data on wireless mobile devices (IPARLA), Université Sciences et Technologies - Bordeaux 1 (UB)-Centre Inria de l'Université de Bordeaux, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
Source:
Computer Graphics Forum, 2010, 29 (7)
Publisher Information:
CCSD; Wiley, 2010.
Publication Year:
2010
Collection:
collection:CNRS
collection:INRIA
collection:ENSEIRB
collection:INRIA-BORDEAUX
collection:LABRI
collection:UNIV-BORDEAUX
collection:INRIA_TEST
collection:TESTALAIN1
collection:TESTBORDEAUX
collection:INRIA2
collection:UNIVERSITE-BORDEAUX
Original Identifier:
HAL:
Document Type:
Journal article<br />Journal articles
Language:
English
ISSN:
0167-7055
1467-8659
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00524555v1
Database:
HAL

Further Information

The usual approach to design subdivision schemes for curves and surfaces basically consists in combining proper rules for regular configurations, with some specific heuristics to handle extraordinary vertices. In this paper, we introduce an alternative approach, called Least Squares Subdivision Surfaces (LS^3), where the key idea is to iteratively project each vertex onto a local approximation of the current polygonal mesh. While the resulting procedure have the same complexity as simpler subdivision schemes, our method offers much higher visual quality, especially in the vicinity of extraordinary vertices. Moreover, we show it can be easily generalized to support boundaries and creases. The fitting procedure allows for a local control of the surface from the normals, making LS^3 very well suited for interactive freeform modeling applications. We demonstrate our approach on diadic triangular and quadrangular refinement schemes, though it can be applied to any splitting strategies.