Treffer: Improving Data Dissemination in Multi-Hop Cognitive Radio Ad-Hoc Networks

Title:
Improving Data Dissemination in Multi-Hop Cognitive Radio Ad-Hoc Networks
Contributors:
Networks and Performance Analysis (NPA), Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), As Scalable As Possible: foundations of large scale dynamic distributed systems (ASAP), Université de Rennes (UR)-Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), ICST
Source:
ADHOCNETS 2011 - 3rd International ICST Conference on Ad Hoc Networks. :117-130
Publisher Information:
CCSD; Springer, 2011.
Publication Year:
2011
Collection:
collection:UPMC
collection:CNRS
collection:INRIA
collection:ENSEIRB
collection:INRIA-SACLAY
collection:UNIV-BORDEAUX
collection:INRIA_TEST
collection:TESTALAIN1
collection:LIP6
collection:TESTBORDEAUX
collection:INRIA2
collection:UPMC_POLE_1
collection:TEST-UNIV-RENNES
collection:UNIV-RENNES
collection:INSA-GROUPE
collection:SORBONNE-UNIVERSITE
collection:SU-SCIENCES
collection:SU-TI
collection:ALLIANCE-SU
collection:UNIVERSITE-BORDEAUX
Subject Geographic:
Original Identifier:
HAL:
Document Type:
Konferenz conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-642-29096-1_9
DOI:
10.1007/978-3-642-29096-1_9
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edshal.inria.00630225v1
Database:
HAL

Weitere Informationen

In this paper, we present SURF, a distributed channel selection strategy for efficient data dissemination in multi-hop cognitive radio ad-hoc networks (CRNs). SURF classifies the available channels on the basis of primary radio unoccupancy and the number of cognitive radio neighbors using the channels. Through extensive NS-2 simulations, we compare the performance of SURF with three related approaches. Simulation results confirm that SURF is effective in selecting the best channels for efficient communication and for highest dissemination reachability in multi-hop CRNs.