Result: Paradiseo: From a Modular Framework for Evolutionary Computation to the Automated Design of Metaheuristics

Title:
Paradiseo: From a Modular Framework for Evolutionary Computation to the Automated Design of Metaheuristics
Paradiseo: From a Modular Framework for Evolutionary Computation to the Automated Design of Metaheuristics: 22 Years of Paradiseo
Contributors:
Biologie systémique - Systems Biology, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Optimisation de grande taille et calcul large échelle (BONUS), Centre Inria de l'Université de Lille, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique Signal et Image de la Côte d'Opale (LISIC), Université du Littoral Côte d'Opale (ULCO), TAckling the Underspecified (TAU), Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de l'Université Paris-Saclay, Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay, Institut National de Recherche en Informatique et en Automatique (Inria), Universidad de Granada = University of Granada (UGR), Poznan University of Technology (PUT), Chercheur indépendant, During 22 years, Paradiseo has been developed by more than 50 people, with the support of the following institutions: Inria, University of Lille, University of the Littoral Opal Coast, Thales, Ecole Polytechnique, University of Granada, Vrije Universiteit Amsterdam, Leiden University, French National Centre for Scientific Research (CNRS), French National Agency for Research (ANR), Fritz Haber Institute of the Max Planck Society, Center for Free-Electron Laser Science, University of Angers, French National Institute of Applied Sciences, Free University of Brussels, Pasteur Institute., ACM Sigevo
Source:
GECCO 2021 - Genetic and Evolutionary Computation Conference. :1522-1530
Publisher Information:
CCSD; ACM, 2021.
Publication Year:
2021
Collection:
collection:PASTEUR
collection:CNRS
collection:INRIA
collection:UNIV-LITTORAL
collection:INRIA-LILLE
collection:INRIA-SACLAY
collection:INRIA_TEST
collection:TESTALAIN1
collection:CENTRALESUPELEC
collection:CRISTAL
collection:INRIA2
collection:UNIV-PARIS-SACLAY
collection:CRISTAL-BONUS
collection:UNIV-LILLE
collection:INRIA-300009
collection:TEST-HALCNRS
collection:UNIVERSITE-PARIS-SACLAY
collection:LISN
collection:GS-ENGINEERING
collection:GS-COMPUTER-SCIENCE
collection:LISN-AO
collection:LISIC
Subject Geographic:
Original Identifier:
HAL:
Document Type:
Conference conferenceObject<br />Conference papers
Language:
English
Relation:
info:eu-repo/semantics/altIdentifier/doi/10.1145/3449726.3463276
DOI:
10.1145/3449726.3463276
Rights:
info:eu-repo/semantics/OpenAccess
URL: http://creativecommons.org/licenses/by-nc-sa/
Accession Number:
edshal.pasteur.03220556v1
Database:
HAL

Further Information

The success of metaheuristic optimization methods has led to the development of a large variety of algorithm paradigms. However, no algorithm clearly dominates all its competitors on all problems. Instead, the underlying variety of landscapes of optimization problems calls for a variety of algorithms to solve them efficiently. It is thus of prior importance to have access to mature and flexible software frameworks which allow for an efficient exploration of the algorithm design space. Such frameworks should be flexible enough to accommodate any kind of metaheuristics, and open enough to connect with higherlevel optimization, monitoring and evaluation softwares. This article summarizes the features of the Paradiseo framework, a comprehensive C++ free software which targets the development of modular metaheuristics. Paradiseo provides a highly modular architecture, a large set of components, speed of execution and automated algorithm design features, which are key to modern approaches to metaheuristics development.