Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Executing PRAM Programs on GPUs

Title:
Executing PRAM Programs on GPUs
Publisher Information:
Linköpings universitet, Programvara och system Linköpings universitet, Tekniska högskolan FernUniversität in Hagen, Germany FernUniversität in Hagen, Germany 2012
Document Type:
E-Ressource Electronic Resource
DOI:
10.1016.j.procs.2012.04.198
Availability:
Open access content. Open access content
info:eu-repo/semantics/openAccess
Note:
application/pdf
English
Other Numbers:
UPE oai:DiVA.org:liu-93368
0000-0001-5241-0026
doi:10.1016/j.procs.2012.04.198
ISI:000306288400196
1234257778
Contributing Source:
UPPSALA UNIV LIBR
From OAIster®, provided by the OCLC Cooperative.
Accession Number:
edsoai.on1234257778
Database:
OAIster

Weitere Informationen

We present a framework to transform PRAM programs from the PRAM programming language Fork to CUDA C, so that they can be compiled and executed on a Graphics Processor (GPU). This allows to explore parallel algorithmics on a scale beyond toy problems, to which the previous, sequential PRAM simulator restricted practical use. We explain the design decisions and evaluate a prototype implementation consisting of a runtime library and a set of rules to transform simple Fork programs which we for now apply by hand. The resulting CUDA code is almost 100 times faster than the previous simulator for compiled Fork programs and allows to handle larger data sizes. Compared to a sequential program for the same problem, the GPU code might be faster or slower, depending on the Fork program structure, i.e. on the overhead incurred. We also give an outlook how future GPUs might notably reduce the overhead.