Treffer: Artificial neural network model for automatic code generation in graphical interface applications: .

Title:
Artificial neural network model for automatic code generation in graphical interface applications: .
Source:
INGE CUC, ISSN 2382-4700, Vol. 19, Nº. 1, 2023 (Ejemplar dedicado a: (Enero - Junio))
Publisher Information:
2023
Document Type:
E-Ressource Electronic Resource
Availability:
Open access content. Open access content
LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI
Note:
application/pdf
INGE CUC, ISSN 2382-4700, Vol. 19, Nº. 1, 2023 (Ejemplar dedicado a: (Enero - Junio))
English
Other Numbers:
S9M oai:dialnet.unirioja.es:ART0001586795
https://dialnet.unirioja.es/servlet/oaiart?codigo=8852005
(Revista) ISSN 0122-6517
(Revista) ISSN 2382-4700
1376708971
Contributing Source:
UNIV COMPLUTENSE DE MADRID
From OAIster®, provided by the OCLC Cooperative.
Accession Number:
edsoai.on1376708971
Database:
OAIster

Weitere Informationen

Introduction: Currently, the software development industry is living in its golden age due to the progress in areas related to machine learning, which is part of AI techniques. These advances have allowed tasks considered exclusively human to be solved using a computer. However, the complexity and the extensive area covered by new projects that must be developed using programming languages have slowed down project delivery times and affected the company's productivity. Objective: This research presents the methodology carried out for constructing a recurrent neural network model for the automatic generation of source code related to graphical user interfaces using Python programming language. Method: By constructing a natural language-related dataset for describing graphical interfaces programmed in Python, a deep neural network model is built to generate automatic source code. Results: The trained model achieves loss and perplexity values of 1.57 and 4.82, respectively, in the validation stage, avoiding overfitting in the model's training. Conclusions: A neural network model is trained to process the natural language related to the request to create graphical interfaces using the Python programming language to automatically generate source code that can be executed through the Python interpreter.