Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage
American Psychological Association 6th edition

Arif, A., Rao, P. G., & Prasad, K. (2025). Hybrid deep learning approach concatenating CNN with supervised learning models for the tool wear prediction based on the analysis of tool wear image and temporal relationship among the cutting parameters. The International Journal of Advanced Manufacturing Technology, 141(9-10), 5603-5624. https://doi.org/10.1007/s00170-025-17008-2

ISO-690 (author-date, English)

ARIF, Abdul, RAO, Ponugoti Gangadhara und PRASAD, Kalapala, 2025. Hybrid deep learning approach concatenating CNN with supervised learning models for the tool wear prediction based on the analysis of tool wear image and temporal relationship among the cutting parameters. The International Journal of Advanced Manufacturing Technology. 1 Dezember 2025. Vol. 141, no. 9-10, p. 5603-5624. DOI 10.1007/s00170-025-17008-2.

Modern Language Association 9th edition

Arif, A., P. G. Rao, und K. Prasad. „Hybrid Deep Learning Approach Concatenating CNN With Supervised Learning Models for the Tool Wear Prediction Based on the Analysis of Tool Wear Image and Temporal Relationship Among the Cutting Parameters“. The International Journal of Advanced Manufacturing Technology, Bd. 141, Nr. 9-10, Dezember 2025, S. 5603-24, https://doi.org/10.1007/s00170-025-17008-2.

Mohr Siebeck - Recht (Deutsch - Österreich)

Arif, Abdul/Rao, Ponugoti Gangadhara/Prasad, Kalapala: Hybrid deep learning approach concatenating CNN with supervised learning models for the tool wear prediction based on the analysis of tool wear image and temporal relationship among the cutting parameters, The International Journal of Advanced Manufacturing Technology 2025, 5603-5624.

Emerald - Harvard

Arif, A., Rao, P.G. und Prasad, K. (2025), „Hybrid deep learning approach concatenating CNN with supervised learning models for the tool wear prediction based on the analysis of tool wear image and temporal relationship among the cutting parameters“, The International Journal of Advanced Manufacturing Technology, Vol. 141 No. 9-10, S. 5603-5624.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.