American Psychological Association 6th edition

Rioja, U., Batina, L., Armendariz, I., & Flores, J. L. (2023). Keep it unbiased: a comparison between estimation of distribution algorithms and deep learning for human interaction-free side-channel analysis. Journal of Cryptographic Engineering, 1-13. https://doi.org/10.1007/s13389-023-00342-0

ISO-690 (author-date, English)

RIOJA, Unai, BATINA, Lejla, ARMENDARIZ, Igor und FLORES, Jose Luis, 2023. Keep it unbiased: a comparison between estimation of distribution algorithms and deep learning for human interaction-free side-channel analysis. Journal of Cryptographic Engineering. 16 Dezember 2023. P. 1-13. DOI 10.1007/s13389-023-00342-0.

Modern Language Association 9th edition

Rioja, U., L. Batina, I. Armendariz, und J. L. Flores. „Keep It Unbiased: A Comparison Between Estimation of Distribution Algorithms and Deep Learning for Human Interaction-Free Side-Channel Analysis“. Journal of Cryptographic Engineering, Dezember 2023, S. 1-13, https://doi.org/10.1007/s13389-023-00342-0.

Mohr Siebeck - Recht (Deutsch - Österreich)

Rioja, Unai/Batina, Lejla/Armendariz, Igor/Flores, Jose Luis: Keep it unbiased: a comparison between estimation of distribution algorithms and deep learning for human interaction-free side-channel analysis, Journal of Cryptographic Engineering 2023, 1-13.

Emerald - Harvard

Rioja, U., Batina, L., Armendariz, I. und Flores, J.L. (2023), „Keep it unbiased: a comparison between estimation of distribution algorithms and deep learning for human interaction-free side-channel analysis“, Journal of Cryptographic Engineering, S. 1-13.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.