American Psychological Association 6th edition

Li, H., Xie, B., Li, X., Zhang, B., & Li, Z. (2025). CRTDiff: A Conditional Residual Temporal Diffusion Model for Data Augmentation to Enhance Machine Learning Prediction of PPV in Open-Pit Mining. Rock Mechanics and Rock Engineering, 1-28. https://doi.org/10.1007/s00603-025-05002-9

ISO-690 (author-date, English)

LI, Heng, XIE, Beijing, LI, Xiaoxu, ZHANG, Ben und LI, Zhuo, 2025. CRTDiff: A Conditional Residual Temporal Diffusion Model for Data Augmentation to Enhance Machine Learning Prediction of PPV in Open-Pit Mining. Rock Mechanics and Rock Engineering. 14 Oktober 2025. P. 1-28. DOI 10.1007/s00603-025-05002-9.

Modern Language Association 9th edition

Li, H., B. Xie, X. Li, B. Zhang, und Z. Li. „CRTDiff: A Conditional Residual Temporal Diffusion Model for Data Augmentation to Enhance Machine Learning Prediction of PPV in Open-Pit Mining“. Rock Mechanics and Rock Engineering, Oktober 2025, S. 1-28, https://doi.org/10.1007/s00603-025-05002-9.

Mohr Siebeck - Recht (Deutsch - Österreich)

Li, Heng/Xie, Beijing/Li, Xiaoxu/Zhang, Ben/Li, Zhuo: CRTDiff: A Conditional Residual Temporal Diffusion Model for Data Augmentation to Enhance Machine Learning Prediction of PPV in Open-Pit Mining, Rock Mechanics and Rock Engineering 2025, 1-28.

Emerald - Harvard

Li, H., Xie, B., Li, X., Zhang, B. und Li, Z. (2025), „CRTDiff: A Conditional Residual Temporal Diffusion Model for Data Augmentation to Enhance Machine Learning Prediction of PPV in Open-Pit Mining“, Rock Mechanics and Rock Engineering, S. 1-28.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.