Sadiq, I. Z., Abubakar, F. S., Saliu, M. A., katsayal, B. S., Salihu, A., & Muhammad, A. (2025). Machine learning algorithms for predictive modeling of dyslipidemia-associated cardiovascular disease risk in pregnancy: a comparison of boosting, random forest, and decision tree regression. Bulletin of the National Research Centre, 49(1). https://doi.org/10.1186/s42269-024-01295-y
ISO-690 (author-date, English)SADIQ, Idris Zubairu, ABUBAKAR, Fatima Sadiq, SALIU, Muhammad Auwal, KATSAYAL, Babangida Sanusi, SALIHU, Aliyu und MUHAMMAD, Aliyu, 2025. Machine learning algorithms for predictive modeling of dyslipidemia-associated cardiovascular disease risk in pregnancy: a comparison of boosting, random forest, and decision tree regression. Bulletin of the National Research Centre. 1 Dezember 2025. Vol. 49, no. 1, . DOI 10.1186/s42269-024-01295-y.
Modern Language Association 9th editionSadiq, I. Z., F. S. Abubakar, M. A. Saliu, B. S. katsayal, A. Salihu, und A. Muhammad. „Machine Learning Algorithms for Predictive Modeling of Dyslipidemia-Associated Cardiovascular Disease Risk in Pregnancy: A Comparison of Boosting, Random Forest, and Decision Tree Regression“. Bulletin of the National Research Centre, Bd. 49, Nr. 1, Dezember 2025, https://doi.org/10.1186/s42269-024-01295-y.
Mohr Siebeck - Recht (Deutsch - Österreich)Sadiq, Idris Zubairu/Abubakar, Fatima Sadiq/Saliu, Muhammad Auwal/katsayal, Babangida Sanusi/Salihu, Aliyu/Muhammad, Aliyu: Machine learning algorithms for predictive modeling of dyslipidemia-associated cardiovascular disease risk in pregnancy: a comparison of boosting, random forest, and decision tree regression, Bulletin of the National Research Centre 2025,
Emerald - HarvardSadiq, I.Z., Abubakar, F.S., Saliu, M.A., katsayal, B.S., Salihu, A. und Muhammad, A. (2025), „Machine learning algorithms for predictive modeling of dyslipidemia-associated cardiovascular disease risk in pregnancy: a comparison of boosting, random forest, and decision tree regression“, Bulletin of the National Research Centre, Vol. 49 No. 1, verfügbar unter:https://doi.org/10.1186/s42269-024-01295-y.