American Psychological Association 6th edition

Li, S. J., Teo, K. L., Yang, X. Q., & Wu, S. Y. (2007). Robust envelope-constrained filter with orthonormal bases and semi-definite and semi-infinite programming. Optimization and Engineering: International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences, 8(3), 299-319. https://doi.org/10.1007/s11081-007-9022-2

ISO-690 (author-date, English)

LI, S. J., TEO, K. L., YANG, X. Q. und WU, S. Y., 2007. Robust envelope-constrained filter with orthonormal bases and semi-definite and semi-infinite programming. Optimization and Engineering: International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences. 1 September 2007. Vol. 8, no. 3, p. 299-319. DOI 10.1007/s11081-007-9022-2.

Modern Language Association 9th edition

Li, S. J., K. L. Teo, X. Q. Yang, und S. Y. Wu. „Robust Envelope-Constrained Filter With Orthonormal Bases and Semi-Definite and Semi-Infinite Programming“. Optimization and Engineering: International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences, Bd. 8, Nr. 3, September 2007, S. 299-1, https://doi.org/10.1007/s11081-007-9022-2.

Mohr Siebeck - Recht (Deutsch - Österreich)

Li, S. J./Teo, K. L./Yang, X. Q./Wu, S. Y.: Robust envelope-constrained filter with orthonormal bases and semi-definite and semi-infinite programming, Optimization and Engineering: International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences 2007, 299-319.

Emerald - Harvard

Li, S.J., Teo, K.L., Yang, X.Q. und Wu, S.Y. (2007), „Robust envelope-constrained filter with orthonormal bases and semi-definite and semi-infinite programming“, Optimization and Engineering: International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences, Vol. 8 No. 3, S. 299-319.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.