Balogh, J., Dósa, G., Hvattum, L. M., Olaj, T., & Tuza, Z. (2022). Guillotine cutting is asymptotically optimal for packing consecutive squares. Optimization Letters, 16(9), 2775-2785. https://doi.org/10.1007/s11590-022-01858-w
ISO-690 (author-date, English)BALOGH, János, DÓSA, György, HVATTUM, Lars Magnus, OLAJ, Tomas and TUZA, Zsolt, 2022. Guillotine cutting is asymptotically optimal for packing consecutive squares. Optimization Letters. 1 December 2022. Vol. 16, no. 9, p. 2775-2785. DOI 10.1007/s11590-022-01858-w.
Modern Language Association 9th editionBalogh, J., G. Dósa, L. M. Hvattum, T. Olaj, and Z. Tuza. “Guillotine Cutting Is Asymptotically Optimal for Packing Consecutive Squares”. Optimization Letters, vol. 16, no. 9, Dec. 2022, pp. 2775-8, https://doi.org/10.1007/s11590-022-01858-w.
Mohr Siebeck - Recht (Deutsch - Österreich)Balogh, János/Dósa, György/Hvattum, Lars Magnus/Olaj, Tomas/Tuza, Zsolt: Guillotine cutting is asymptotically optimal for packing consecutive squares, Optimization Letters 2022, 2775-2785.
Emerald - HarvardBalogh, J., Dósa, G., Hvattum, L.M., Olaj, T. and Tuza, Z. (2022), “Guillotine cutting is asymptotically optimal for packing consecutive squares”, Optimization Letters, Vol. 16 No. 9, pp. 2775-2785.