Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage
American Psychological Association 6th edition

Zhang, X., Feng, J., Cai, F., Huang, K., & Wang, S. (2025). A novel state of health estimation model for lithium-ion batteries incorporating signal processing and optimized machine learning methods. Frontiers in Energy, 19(3), 348-364. https://doi.org/10.1007/s11708-024-0969-x

ISO-690 (author-date, English)

ZHANG, Xing, FENG, Juqiang, CAI, Feng, HUANG, Kaifeng und WANG, Shunli, 2025. A novel state of health estimation model for lithium-ion batteries incorporating signal processing and optimized machine learning methods. Frontiers in Energy. 1 Juni 2025. Vol. 19, no. 3, p. 348-364. DOI 10.1007/s11708-024-0969-x.

Modern Language Association 9th edition

Zhang, X., J. Feng, F. Cai, K. Huang, und S. Wang. „A Novel State of Health Estimation Model for Lithium-Ion Batteries Incorporating Signal Processing and Optimized Machine Learning Methods“. Frontiers in Energy, Bd. 19, Nr. 3, Juni 2025, S. 348-64, https://doi.org/10.1007/s11708-024-0969-x.

Mohr Siebeck - Recht (Deutsch - Österreich)

Zhang, Xing/Feng, Juqiang/Cai, Feng/Huang, Kaifeng/Wang, Shunli: A novel state of health estimation model for lithium-ion batteries incorporating signal processing and optimized machine learning methods, Frontiers in Energy 2025, 348-364.

Emerald - Harvard

Zhang, X., Feng, J., Cai, F., Huang, K. und Wang, S. (2025), „A novel state of health estimation model for lithium-ion batteries incorporating signal processing and optimized machine learning methods“, Frontiers in Energy, Vol. 19 No. 3, S. 348-364.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.