Walunj, V., Gharibi, G., Alanazi, R., & Lee, Y. (2022). Defect prediction using deep learning with Network Portrait Divergence for software evolution. Empirical Software Engineering: An International Journal, 27(5). https://doi.org/10.1007/s10664-022-10147-0
ISO-690 (author-date, English)WALUNJ, Vijay, GHARIBI, Gharib, ALANAZI, Rakan und LEE, Yugyung, 2022. Defect prediction using deep learning with Network Portrait Divergence for software evolution. Empirical Software Engineering: An International Journal. 1 September 2022. Vol. 27, no. 5, . DOI 10.1007/s10664-022-10147-0.
Modern Language Association 9th editionWalunj, V., G. Gharibi, R. Alanazi, und Y. Lee. „Defect Prediction Using Deep Learning With Network Portrait Divergence for Software Evolution“. Empirical Software Engineering: An International Journal, Bd. 27, Nr. 5, September 2022, https://doi.org/10.1007/s10664-022-10147-0.
Mohr Siebeck - Recht (Deutsch - Österreich)Walunj, Vijay/Gharibi, Gharib/Alanazi, Rakan/Lee, Yugyung: Defect prediction using deep learning with Network Portrait Divergence for software evolution, Empirical Software Engineering: An International Journal 2022,
Emerald - HarvardWalunj, V., Gharibi, G., Alanazi, R. und Lee, Y. (2022), „Defect prediction using deep learning with Network Portrait Divergence for software evolution“, Empirical Software Engineering: An International Journal, Vol. 27 No. 5, verfügbar unter:https://doi.org/10.1007/s10664-022-10147-0.