Wang, S., Shen, L., Xiao, J., Tian, Z., Wang, F., Hu, X., Zhu, Y., & Feng, G. (2026). Breaking Redundancy via 3 D Sparse Geometry: 3 D-aware Neural Compression for Multi-View Videos. International Journal of Computer Vision, 134(1). https://doi.org/10.1007/s11263-025-02604-2
ISO-690 (author-date, English)WANG, Shiwei, SHEN, Liquan, XIAO, Jimin, TIAN, Zhaoyi, WANG, Feifeng, HU, Xiangyu, ZHU, Yao und FENG, Guorui, 2026. Breaking Redundancy via 3 D Sparse Geometry: 3 D-aware Neural Compression for Multi-View Videos. International Journal of Computer Vision. 1 Januar 2026. Vol. 134, no. 1, . DOI 10.1007/s11263-025-02604-2.
Modern Language Association 9th editionWang, S., L. Shen, J. Xiao, Z. Tian, F. Wang, X. Hu, Y. Zhu, und G. Feng. „Breaking Redundancy via 3 D Sparse Geometry: 3 D-Aware Neural Compression for Multi-View Videos“. International Journal of Computer Vision, Bd. 134, Nr. 1, Januar 2026, https://doi.org/10.1007/s11263-025-02604-2.
Mohr Siebeck - Recht (Deutsch - Österreich)Wang, Shiwei/Shen, Liquan/Xiao, Jimin/Tian, Zhaoyi/Wang, Feifeng/Hu, Xiangyu u. a.: Breaking Redundancy via 3 D Sparse Geometry: 3 D-aware Neural Compression for Multi-View Videos, International Journal of Computer Vision 2026,
Emerald - HarvardWang, S., Shen, L., Xiao, J., Tian, Z., Wang, F., Hu, X., Zhu, Y. und Feng, G. (2026), „Breaking Redundancy via 3 D Sparse Geometry: 3 D-aware Neural Compression for Multi-View Videos“, International Journal of Computer Vision, Vol. 134 No. 1, verfügbar unter:https://doi.org/10.1007/s11263-025-02604-2.