American Psychological Association 6th edition

Liang, A., Ge, J., Liu, Z., Han, X., Hou, S., Li, G., Liu, M., & Zhao, J. (2025). Reliability of noninvasive hyperspectral tongue diagnosis for menstrual diseases using machine learning method. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-90679-9

ISO-690 (author-date, English)

LIANG, Aohui, GE, Jiaming, LIU, Zhaowei, HAN, Xiangli, HOU, Songtao, LI, Gang, LIU, Ming and ZHAO, Jing, 2025. Reliability of noninvasive hyperspectral tongue diagnosis for menstrual diseases using machine learning method. Scientific Reports. 1 December 2025. Vol. 15, no. 1, . DOI 10.1038/s41598-025-90679-9.

Modern Language Association 9th edition

Liang, A., J. Ge, Z. Liu, X. Han, S. Hou, G. Li, M. Liu, and J. Zhao. “Reliability of Noninvasive Hyperspectral Tongue Diagnosis for Menstrual Diseases Using Machine Learning Method”. Scientific Reports, vol. 15, no. 1, Dec. 2025, https://doi.org/10.1038/s41598-025-90679-9.

Mohr Siebeck - Recht (Deutsch - Österreich)

Liang, Aohui/Ge, Jiaming/Liu, Zhaowei/Han, Xiangli/Hou, Songtao/Li, Gang et al.: Reliability of noninvasive hyperspectral tongue diagnosis for menstrual diseases using machine learning method, Scientific Reports 2025,

Emerald - Harvard

Liang, A., Ge, J., Liu, Z., Han, X., Hou, S., Li, G., Liu, M. and Zhao, J. (2025), “Reliability of noninvasive hyperspectral tongue diagnosis for menstrual diseases using machine learning method”, Scientific Reports, Vol. 15 No. 1, available at:https://doi.org/10.1038/s41598-025-90679-9.

Warning: These citations may not always be 100% accurate.