American Psychological Association 6th edition

Song, Z., Shi, L., Pu, S., & Yan, M. (2023). Optimal gradient tracking for decentralized optimization. Mathematical Programming: A Publication of the Mathematical Optimization Society, 1-53. https://doi.org/10.1007/s10107-023-01997-7

ISO-690 (author-date, English)

SONG, Zhuoqing, SHI, Lei, PU, Shi and YAN, Ming, 2023. Optimal gradient tracking for decentralized optimization. Mathematical Programming: A Publication of the Mathematical Optimization Society. 7 July 2023. P. 1-53. DOI 10.1007/s10107-023-01997-7.

Modern Language Association 9th edition

Song, Z., L. Shi, S. Pu, and M. Yan. “Optimal Gradient Tracking for Decentralized Optimization”. Mathematical Programming: A Publication of the Mathematical Optimization Society, July 2023, pp. 1-53, https://doi.org/10.1007/s10107-023-01997-7.

Mohr Siebeck - Recht (Deutsch - Österreich)

Song, Zhuoqing/Shi, Lei/Pu, Shi/Yan, Ming: Optimal gradient tracking for decentralized optimization, Mathematical Programming: A Publication of the Mathematical Optimization Society 2023, 1-53.

Emerald - Harvard

Song, Z., Shi, L., Pu, S. and Yan, M. (2023), “Optimal gradient tracking for decentralized optimization”, Mathematical Programming: A Publication of the Mathematical Optimization Society, pp. 1-53.

Warning: These citations may not always be 100% accurate.