American Psychological Association 6th edition

Vinh, N. T., Hoai, P. T., Dung, L. A., & Cho, Y. J. (2023). A New Inertial Self-adaptive Gradient Algorithm for the Split Feasibility Problem and an Application to the Sparse Recovery Problem. Acta Mathematica Sinica, English Series, 39(12), 2489-2506. https://doi.org/10.1007/s10114-023-2311-7

ISO-690 (author-date, English)

VINH, Nguyen The, HOAI, Pham Thi, DUNG, Le Anh und CHO, Yeol Je, 2023. A New Inertial Self-adaptive Gradient Algorithm for the Split Feasibility Problem and an Application to the Sparse Recovery Problem. Acta Mathematica Sinica, English Series. 1 Dezember 2023. Vol. 39, no. 12, p. 2489-2506. DOI 10.1007/s10114-023-2311-7.

Modern Language Association 9th edition

Vinh, N. T., P. T. Hoai, L. A. Dung, und Y. J. Cho. „A New Inertial Self-Adaptive Gradient Algorithm for the Split Feasibility Problem and an Application to the Sparse Recovery Problem“. Acta Mathematica Sinica, English Series, Bd. 39, Nr. 12, Dezember 2023, S. 2489-06, https://doi.org/10.1007/s10114-023-2311-7.

Mohr Siebeck - Recht (Deutsch - Österreich)

Vinh, Nguyen The/Hoai, Pham Thi/Dung, Le Anh/Cho, Yeol Je: A New Inertial Self-adaptive Gradient Algorithm for the Split Feasibility Problem and an Application to the Sparse Recovery Problem, Acta Mathematica Sinica, English Series 2023, 2489-2506.

Emerald - Harvard

Vinh, N.T., Hoai, P.T., Dung, L.A. und Cho, Y.J. (2023), „A New Inertial Self-adaptive Gradient Algorithm for the Split Feasibility Problem and an Application to the Sparse Recovery Problem“, Acta Mathematica Sinica, English Series, Vol. 39 No. 12, S. 2489-2506.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.