American Psychological Association 6th edition

Li, S., Deng, Z., Lu, C., Wu, J., Dai, J., & Wang, Q. (2023). An efficient global algorithm for indefinite separable quadratic knapsack problems with box constraints. Computational Optimization and Applications: An International Journal, 1-33. https://doi.org/10.1007/s10589-023-00488-x

ISO-690 (author-date, English)

LI, Shaoze, DENG, Zhibin, LU, Cheng, WU, Junhao, DAI, Jinyu und WANG, Qiao, 2023. An efficient global algorithm for indefinite separable quadratic knapsack problems with box constraints. Computational Optimization and Applications: An International Journal. 2 Mai 2023. P. 1-33. DOI 10.1007/s10589-023-00488-x.

Modern Language Association 9th edition

Li, S., Z. Deng, C. Lu, J. Wu, J. Dai, und Q. Wang. „An Efficient Global Algorithm for Indefinite Separable Quadratic Knapsack Problems With Box Constraints“. Computational Optimization and Applications: An International Journal, Mai 2023, S. 1-33, https://doi.org/10.1007/s10589-023-00488-x.

Mohr Siebeck - Recht (Deutsch - Österreich)

Li, Shaoze/Deng, Zhibin/Lu, Cheng/Wu, Junhao/Dai, Jinyu/Wang, Qiao: An efficient global algorithm for indefinite separable quadratic knapsack problems with box constraints, Computational Optimization and Applications: An International Journal 2023, 1-33.

Emerald - Harvard

Li, S., Deng, Z., Lu, C., Wu, J., Dai, J. und Wang, Q. (2023), „An efficient global algorithm for indefinite separable quadratic knapsack problems with box constraints“, Computational Optimization and Applications: An International Journal, S. 1-33.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.