American Psychological Association 6th edition

Elsholtz, C., Führer, J., Füredi, E., Kovács, B., Pach, P. P., Simon, D. G., & Velich, N. (2025). Maximal line-free sets in Fpn. Periodica Mathematica Hungarica, 1-15. https://doi.org/10.1007/s10998-024-00617-x

ISO-690 (author-date, English)

ELSHOLTZ, Christian, FÜHRER, Jakob, FÜREDI, Erik, KOVÁCS, Benedek, PACH, Péter Pál, SIMON, Dániel Gábor and VELICH, Nóra, 2025. Maximal line-free sets in Fpn. Periodica Mathematica Hungarica. 4 January 2025. P. 1-15. DOI 10.1007/s10998-024-00617-x.

Modern Language Association 9th edition

Elsholtz, C., J. Führer, E. Füredi, B. Kovács, P. P. Pach, D. G. Simon, and N. Velich. “Maximal Line-Free Sets in Fpn”. Periodica Mathematica Hungarica, Jan. 2025, pp. 1-15, https://doi.org/10.1007/s10998-024-00617-x.

Mohr Siebeck - Recht (Deutsch - Österreich)

Elsholtz, Christian/Führer, Jakob/Füredi, Erik/Kovács, Benedek/Pach, Péter Pál/Simon, Dániel Gábor et al.: Maximal line-free sets in Fpn, Periodica Mathematica Hungarica 2025, 1-15.

Emerald - Harvard

Elsholtz, C., Führer, J., Füredi, E., Kovács, B., Pach, P.P., Simon, D.G. and Velich, N. (2025), “Maximal line-free sets in Fpn”, Periodica Mathematica Hungarica, pp. 1-15.

Warning: These citations may not always be 100% accurate.