American Psychological Association 6th edition

Chen, J., & Rao, S. (2022). L2∂¯ Extension of L2∂¯-Closed Forms on Weakly Pseudoconvex Kähler Manifolds. The Journal of Geometric Analysis, 32(5). https://doi.org/10.1007/s12220-022-00886-3

ISO-690 (author-date, English)

CHEN, Jian und RAO, Sheng, 2022. L2∂¯ Extension of L2∂¯-Closed Forms on Weakly Pseudoconvex Kähler Manifolds. The Journal of Geometric Analysis. 1 Mai 2022. Vol. 32, no. 5, . DOI 10.1007/s12220-022-00886-3.

Modern Language Association 9th edition

Chen, J., und S. Rao. „L2∂¯ Extension of L2∂¯-Closed Forms on Weakly Pseudoconvex Kähler Manifolds“. The Journal of Geometric Analysis, Bd. 32, Nr. 5, Mai 2022, https://doi.org/10.1007/s12220-022-00886-3.

Mohr Siebeck - Recht (Deutsch - Österreich)

Chen, Jian/Rao, Sheng: L2∂¯ Extension of L2∂¯-Closed Forms on Weakly Pseudoconvex Kähler Manifolds, The Journal of Geometric Analysis 2022,

Emerald - Harvard

Chen, J. und Rao, S. (2022), „L2∂¯ Extension of L2∂¯-Closed Forms on Weakly Pseudoconvex Kähler Manifolds“, The Journal of Geometric Analysis, Vol. 32 No. 5, verfügbar unter:https://doi.org/10.1007/s12220-022-00886-3.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.