American Psychological Association 6th edition

Samanta, S. K., & Das, K. (2025). A simple procedure to determine the queue length and waiting time distributions for \documentclass[12 pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69 pt} \begin{document}$$M/G^{a,b}/1$$\end{document} queueing system. Mathematical Methods of Operations Research, 1-35. https://doi.org/10.1007/s00186-025-00910-6

ISO-690 (author-date, English)

SAMANTA, Sujit Kumar and DAS, Kousik, 2025. A simple procedure to determine the queue length and waiting time distributions for \documentclass[12 pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69 pt} \begin{document}$$M/G^{a,b}/1$$\end{document} queueing system. Mathematical Methods of Operations Research. 27 November 2025. P. 1-35. DOI 10.1007/s00186-025-00910-6.

Modern Language Association 9th edition

Samanta, S. K., and K. Das. “A Simple Procedure to Determine the Queue Length and Waiting Time Distributions for \documentclass[12 pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69 pt} \begin{document}$$M/G^{a,b}/1$$\end{document} Queueing System”. Mathematical Methods of Operations Research, Nov. 2025, pp. 1-35, https://doi.org/10.1007/s00186-025-00910-6.

Mohr Siebeck - Recht (Deutsch - Österreich)

Samanta, Sujit Kumar/Das, Kousik: A simple procedure to determine the queue length and waiting time distributions for \documentclass[12 pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69 pt} \begin{document}$$M/G^{a,b}/1$$\end{document} queueing system, Mathematical Methods of Operations Research 2025, 1-35.

Emerald - Harvard

Samanta, S.K. and Das, K. (2025), “A simple procedure to determine the queue length and waiting time distributions for \documentclass[12 pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69 pt} \begin{document}$$M/G^{a,b}/1$$\end{document} queueing system”, Mathematical Methods of Operations Research, pp. 1-35.

Warning: These citations may not always be 100% accurate.