Jolaoso, L. O., Aphane, M., Raji, M. T., Osinuga, I. A., & Olajuwon, B. I. (2022). Convergence theorems for solving a system of pseudomonotone variational inequalities using Bregman distance in Banach spaces. Bollettino dell’Unione Matematica Italiana, 1-28. https://doi.org/10.1007/s40574-022-00322-y
ISO-690 (author-date, English)JOLAOSO, Lateef Olakunle, APHANE, Maggie, RAJI, Musiliu Tayo, OSINUGA, Idowu Ademola und OLAJUWON, Bakai Ishola, 2022. Convergence theorems for solving a system of pseudomonotone variational inequalities using Bregman distance in Banach spaces. Bollettino dell’Unione Matematica Italiana. 8 April 2022. P. 1-28. DOI 10.1007/s40574-022-00322-y.
Modern Language Association 9th editionJolaoso, L. O., M. Aphane, M. T. Raji, I. A. Osinuga, und B. I. Olajuwon. „Convergence Theorems for Solving a System of Pseudomonotone Variational Inequalities Using Bregman Distance in Banach Spaces“. Bollettino dell’Unione Matematica Italiana, April 2022, S. 1-28, https://doi.org/10.1007/s40574-022-00322-y.
Mohr Siebeck - Recht (Deutsch - Österreich)Jolaoso, Lateef Olakunle/Aphane, Maggie/Raji, Musiliu Tayo/Osinuga, Idowu Ademola/Olajuwon, Bakai Ishola: Convergence theorems for solving a system of pseudomonotone variational inequalities using Bregman distance in Banach spaces, Bollettino dell’Unione Matematica Italiana 2022, 1-28.
Emerald - HarvardJolaoso, L.O., Aphane, M., Raji, M.T., Osinuga, I.A. und Olajuwon, B.I. (2022), „Convergence theorems for solving a system of pseudomonotone variational inequalities using Bregman distance in Banach spaces“, Bollettino dell’Unione Matematica Italiana, S. 1-28.