Lobanov, A. I., & Mirov, F. K. (2018). A Hybrid Difference Scheme under Generalized Approximation Condition in the Space of Undetermined Coefficients. Computational Mathematics and Mathematical Physics, 58(8), 1270-1279. https://doi.org/10.1134/s0965542518080134
ISO-690 (author-date, English)LOBANOV, A. I. and MIROV, F. Kh., 2018. A Hybrid Difference Scheme under Generalized Approximation Condition in the Space of Undetermined Coefficients. Computational Mathematics and Mathematical Physics. 1 August 2018. Vol. 58, no. 8, p. 1270-1279. DOI 10.1134/s0965542518080134.
Modern Language Association 9th editionLobanov, A. I., and F. K. Mirov. “A Hybrid Difference Scheme under Generalized Approximation Condition in the Space of Undetermined Coefficients”. Computational Mathematics and Mathematical Physics, vol. 58, no. 8, Aug. 2018, pp. 1270-9, https://doi.org/10.1134/s0965542518080134.
Mohr Siebeck - Recht (Deutsch - Österreich)Lobanov, A. I./Mirov, F. Kh.: A Hybrid Difference Scheme under Generalized Approximation Condition in the Space of Undetermined Coefficients, Computational Mathematics and Mathematical Physics 2018, 1270-1279.
Emerald - HarvardLobanov, A.I. and Mirov, F.K. (2018), “A Hybrid Difference Scheme under Generalized Approximation Condition in the Space of Undetermined Coefficients”, Computational Mathematics and Mathematical Physics, Vol. 58 No. 8, pp. 1270-1279.