American Psychological Association 6th edition

Lobanov, A. I., & Mirov, F. K. (2018). A Hybrid Difference Scheme under Generalized Approximation Condition in the Space of Undetermined Coefficients. Computational Mathematics and Mathematical Physics, 58(8), 1270-1279. https://doi.org/10.1134/s0965542518080134

ISO-690 (author-date, English)

LOBANOV, A. I. and MIROV, F. Kh., 2018. A Hybrid Difference Scheme under Generalized Approximation Condition in the Space of Undetermined Coefficients. Computational Mathematics and Mathematical Physics. 1 August 2018. Vol. 58, no. 8, p. 1270-1279. DOI 10.1134/s0965542518080134.

Modern Language Association 9th edition

Lobanov, A. I., and F. K. Mirov. “A Hybrid Difference Scheme under Generalized Approximation Condition in the Space of Undetermined Coefficients”. Computational Mathematics and Mathematical Physics, vol. 58, no. 8, Aug. 2018, pp. 1270-9, https://doi.org/10.1134/s0965542518080134.

Mohr Siebeck - Recht (Deutsch - Österreich)

Lobanov, A. I./Mirov, F. Kh.: A Hybrid Difference Scheme under Generalized Approximation Condition in the Space of Undetermined Coefficients, Computational Mathematics and Mathematical Physics 2018, 1270-1279.

Emerald - Harvard

Lobanov, A.I. and Mirov, F.K. (2018), “A Hybrid Difference Scheme under Generalized Approximation Condition in the Space of Undetermined Coefficients”, Computational Mathematics and Mathematical Physics, Vol. 58 No. 8, pp. 1270-1279.

Warning: These citations may not always be 100% accurate.