Treffer: Teaching Bayesian and Markov methods in business analytics curricula: An integrated approach.
Weitere Informationen
In the era of artificial intelligence (AI), big data (BD), and digital transformation (DT), analytics students should gain the ability to solve business problems by integrating various methods. This teaching brief illustrates how two such methods—Bayesian analysis and Markov chains—can be combined to enhance student learning using the Analytics Project Life Cycle Management (APLCM) approach and a case study involving qualitative forecasting. The theoretical frameworks for combining Bayesian and Markov methods are developed, and a forecasting solution is implemented in both MS Excel and Python. Based on an assessment of student learning, applying this pedagogical approach helps students better use these disjoint methods and appreciate the value of integrating them. Although this teaching brief is designed and most appropriate for graduate students with previous BA courses, it can also be used in upper‐level courses within an undergraduate BA curriculum. Finally, this teaching brief provides the instructors wishing to use this pedagogical approach in their appropriate courses with the necessary resources (i.e., case study, in‐class example, and the MS Excel and Python templates). [ABSTRACT FROM AUTHOR]
Copyright of Decision Sciences Journal of Innovative Education is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Volltext ist im Gastzugang nicht verfügbar. Login für vollen Zugriff.