Treffer: Machine Learning Literacy for Measurement Professionals: A Practical Tutorial.
Weitere Informationen
The COVID‐19 pandemic has accelerated the digitalization of assessment, creating new challenges for measurement professionals, including big data management, test security, and analyzing new validity evidence. In response to these challenges, Machine Learning (ML) emerges as an increasingly important skill in the toolbox of measurement professionals in this new era. However, most ML tutorials are technical and conceptual‐focused. Therefore, this tutorial aims to provide a practical introduction to ML in the context of educational measurement. We also supplement our tutorial with several examples of supervised and unsupervised ML techniques applied to marking a short‐answer question. Python codes are available on GitHub. In the end, common misconceptions about ML are discussed. [ABSTRACT FROM AUTHOR]
Copyright of Educational Measurement: Issues & Practice is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Volltext ist im Gastzugang nicht verfügbar. Login für vollen Zugriff.