Treffer: Creating virtual patients using large language models: scalable, global, and low cost.

Title:
Creating virtual patients using large language models: scalable, global, and low cost.
Authors:
Cook, David A.1 cook.david33@mayo.edu
Source:
Medical Teacher. Jan2025, Vol. 47 Issue 1, p40-42. 3p.
Database:
Education Research Complete

Weitere Informationen

Virtual patients (VPs) have long been used to teach and assess clinical reasoning. VPs can be programmed to simulate authentic patient-clinician interactions and to reflect a variety of contextual permutations. However, their use has historically been limited by the high cost and logistical challenges of large-scale implementation. We describe a novel globally-accessible approach to develop low-cost VPs at scale using artificial intelligence (AI) large language models (LLMs). We leveraged OpenAI Generative Pretrained Transformer (GPT) to create and implement two interactive VPs, and created permutations that differed in contextual features. We used systematic prompt engineering to refine a prompt instructing ChatGPT to emulate the patient for a given case scenario, and then provide feedback on clinician performance. We implemented the prompts using GPT-3.5-turbo and GPT-4.0, and created a simple text-only interface using the OpenAI API. GPT-4.0 was far superior. We also conducted limited testing using another LLM (Anthropic Claude), with promising results. We provide the final prompt, case scenarios, and Python code. LLM-VPs represent a 'disruptive innovation' – an innovation that is unmistakably inferior to existing products but substantially more accessible (due to low cost, global reach, or ease of implementation) and thereby able to reach a previously underserved market. LLM-VPs will lay the foundation for global democratization via low-cost-low-risk scalable development of educational and clinical simulations. These powerful tools could revolutionize the teaching, assessment, and research of management reasoning, shared decision-making, and AI evaluation (e.g. 'software as a medical device' evaluations). [ABSTRACT FROM AUTHOR]

Copyright of Medical Teacher is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Volltext ist im Gastzugang nicht verfügbar.