Treffer: Development and maturity of co-word thematic clusters: the field of linked data.
Weitere Informationen
Purpose: This research aimed to visualize and analyze the co-word network and thematic clusters of the intellectual structure in the field of linked data during 1900–2021. Design/methodology/approach: This applied research employed a descriptive and analytical method, scientometric indicators, co-word techniques, and social network analysis. VOSviewer, SPSS, Python programming, and UCINet software were used for data analysis and network structure visualization. Findings: The top ranks of the Web of Science (WOS) subject categorization belonged to various fields of computer science. Besides, the USA was the most prolific country. The keyword ontology had the highest frequency of co-occurrence. Ontology and semantic were the most frequent co-word pairs. In terms of the network structure, nine major topic clusters were identified based on co-occurrence, and 29 thematic clusters were identified based on hierarchical clustering. Comparisons between the two clustering techniques indicated that three clusters, namely semantic bioinformatics, knowledge representation, and semantic tools were in common. The most mature and mainstream thematic clusters were natural language processing techniques to boost modeling and visualization, context-aware knowledge discovery, probabilistic latent semantic analysis (PLSA), semantic tools, latent semantic indexing, web ontology language (OWL) syntax, and ontology-based deep learning. Originality/value: This study adopted various techniques such as co-word analysis, social network analysis network structure visualization, and hierarchical clustering to represent a suitable, visual, methodical, and comprehensive perspective into linked data. [ABSTRACT FROM AUTHOR]
Copyright of Library Hi Tech is the property of Emerald Publishing Limited and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)