Treffer: Predicting Student Success with Heterogeneous Graph Deep Learning and Machine Learning Models
Postsecondary Education
Weitere Informationen
Early identification of student success is crucial for enabling timely interventions, reducing dropout rates, and promoting on-time graduation. In educational settings, AI-powered systems have become essential for predicting student performance due to their advanced analytical capabilities. However, effectively leveraging diverse student data to uncover latent and complex patterns remains a key challenge. While prior studies have explored this area, the potential of dynamic data features and multi-category entities has been largely overlooked. To address this gap, we propose a framework that integrates heterogeneous graph deep learning models to enhance early and continuous student performance prediction, using traditional machine learning algorithms for comparison. Our approach employs a graph metapath structure and incorporates dynamic assessment features, which progressively influence the student success prediction task. Experiments on the Open University Learning Analytics (OULA) dataset demonstrate promising results, achieving a 68.6% validation F1 score with only 7% of the semester completed, and reaching up to 89.5% near the semester's end. Our approach outperforms top machine learning models by 4.7% in validation F1 score during the critical early 7% of the semester, underscoring the value of dynamic features and heterogeneous graph representations in student success prediction. [For the complete proceedings, see ED675583.]
As Provided