Treffer: A Machine Learning-Assisted Automation System for Optimizing Session Preparation Time in Digital Audio Workstations.
Weitere Informationen
Modern audio production workflows often require significant manual effort during the initial session preparation phase, including track labeling, format standardization, and gain staging. This paper presents a rule-based and Machine Learning-assisted automation system designed to minimize the time required for these tasks in Digital Audio Workstations (DAWs). The system automatically detects and labels audio tracks, identifies and eliminates redundant fake stereo channels, merges double-tracked instruments into stereo pairs, standardizes sample rate and bit rate across all tracks, and applies initial gain staging using target loudness values derived from a Genetic Algorithm (GA)-based system, which optimizes gain levels for individual track types based on engineer preferences and instrument characteristics. By replacing manual setup processes with automated decision-making methods informed by Machine Learning (ML) and rule-based heuristics, the system reduces session preparation time by up to 70% in typical multitrack audio projects. The proposed approach highlights how practical automation, combined with lightweight Neural Network (NN) models, can optimize workflow efficiency in real-world music production environments. [ABSTRACT FROM AUTHOR]