Luongo, G., Azzolin, L., Schuler, S., Rivolta, M. W., Almeida, T. P., Martínez, J. P., Soriano, D. C., Luik, A., Müller-Edenborn, B., Jadidi, A. S., Dössel, O., Sassi, R., Laguna, P., & Loewe, A. [ca. 2021]. Machine learning enables noninvasive prediction of atrial fibrillation driver location and acute pulmonary vein ablation success using the 12-lead ECG [Cd]. Freiburg: Universität. https://doi.org/10.1016/j.cvdhj.2021.03.002
ISO-690 (author-date, English)LUONGO, Giorgio, AZZOLIN, Luca, SCHULER, Steffen, RIVOLTA, Massimo W., ALMEIDA, Tiago P., MARTÍNEZ, Juan P., SORIANO, Diogo C., LUIK, Armin, MÜLLER-EDENBORN, Björn, JADIDI, Amir S., DÖSSEL, Olaf, SASSI, Roberto, LAGUNA, Pablo und LOEWE, Axel, 2021. Machine learning enables noninvasive prediction of atrial fibrillation driver location and acute pulmonary vein ablation success using the 12-lead ECG. Freiburg: Universität.
Modern Language Association 9th editionLuongo, G., L. Azzolin, S. Schuler, M. W. Rivolta, T. P. Almeida, J. P. Martínez, D. C. Soriano, A. Luik, B. Müller-Edenborn, A. S. Jadidi, O. Dössel, R. Sassi, P. Laguna, und A. Loewe. Machine learning enables noninvasive prediction of atrial fibrillation driver location and acute pulmonary vein ablation success using the 12-lead ECG. cd, Universität, 2021, https://doi.org/10.1016/j.cvdhj.2021.03.002.
Mohr Siebeck - Recht (Deutsch - Österreich)Luongo, Giorgio/Azzolin, Luca/Schuler, Steffen/Rivolta, Massimo W./Almeida, Tiago P./Martínez, Juan P. u. a.: Machine learning enables noninvasive prediction of atrial fibrillation driver location and acute pulmonary vein ablation success using the 12-lead ECG, Freiburg 2021.
Emerald - HarvardLuongo, G., Azzolin, L., Schuler, S., Rivolta, M.W., Almeida, T.P., Martínez, J.P., Soriano, D.C., Luik, A., Müller-Edenborn, B., Jadidi, A.S., Dössel, O., Sassi, R., Laguna, P. und Loewe, A. (2021), Machine learning enables noninvasive prediction of atrial fibrillation driver location and acute pulmonary vein ablation success using the 12-lead ECG, Bd. , Universität, Freiburg, verfügbar unter:https://doi.org/10.1016/j.cvdhj.2021.03.002.