American Psychological Association 6th edition

Roth, M., Avemarie, G., & Rinderknecht, S. [ca. 2022]. A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models [Electronic]. Mathematics, (Band 10, Heft 13 (2022), Artikel-ID: 2226), , Heft 13 (2022), Artikel-ID: 2226. https://doi.org/10.3390/math10132226

ISO-690 (author-date, English)

ROTH, Maximilian, AVEMARIE, Georg und RINDERKNECHT, Stephan, 2022. A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models. Mathematics. 2022. No. Band 10, Heft 13 (2022), Artikel-ID: 2226, p. , Heft 13 (2022), Artikel-ID: 2226. DOI 10.3390/math10132226.

Modern Language Association 9th edition

Roth, M., G. Avemarie, und S. Rinderknecht. „A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models“. Mathematics, electronic, Nr. Band 10, Heft 13 (2022), Artikel-ID: 2226, Basel : MDPI, 2013-, 2022, S. , Heft 13 (2022), Artikel-ID: 2226, https://doi.org/10.3390/math10132226.

Mohr Siebeck - Recht (Deutsch - Österreich)

Roth, Maximilian/Avemarie, Georg/Rinderknecht, Stephan: A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models, Mathematics 2022, , Heft 13 (2022), Artikel-ID: 2226.

Emerald - Harvard

Roth, M., Avemarie, G. und Rinderknecht, S. (2022), „A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models“, Mathematics, Basel : MDPI, 2013-, No. Band 10, Heft 13 (2022), Artikel-ID: 2226, S. , Heft 13 (2022), Artikel-ID: 2226.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.