American Psychological Association 6th edition

Lötsch, J., & Mayer, B. [ca. 2022]. A biomedical case study showing that tuning random forests can fundamentally change the interpretation of supervised data structure exploration aimed at knowledge discovery. In Bio Med Informatics [Cd]. Basel: MDPI. https://doi.org/10.3390/biomedinformatics2040034

ISO-690 (author-date, English)

LÖTSCH, Jörn und MAYER, Benjamin, 2022. A biomedical case study showing that tuning random forests can fundamentally change the interpretation of supervised data structure exploration aimed at knowledge discovery. Basel: MDPI.

Modern Language Association 9th edition

Lötsch, J., und B. Mayer. „A biomedical case study showing that tuning random forests can fundamentally change the interpretation of supervised data structure exploration aimed at knowledge discovery“. Bio Med Informatics, cd, MDPI, 2022, https://doi.org/10.3390/biomedinformatics2040034.

Mohr Siebeck - Recht (Deutsch - Österreich)

Lötsch, Jörn/Mayer, Benjamin: A biomedical case study showing that tuning random forests can fundamentally change the interpretation of supervised data structure exploration aimed at knowledge discovery, Basel 2022.

Emerald - Harvard

Lötsch, J. und Mayer, B. (2022), A biomedical case study showing that tuning random forests can fundamentally change the interpretation of supervised data structure exploration aimed at knowledge discovery, Bio Med Informatics, Bd. , MDPI, Basel, verfügbar unter:https://doi.org/10.3390/biomedinformatics2040034.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.