Lötsch, J., & Mayer, B. [ca. 2022]. A biomedical case study showing that tuning random forests can fundamentally change the interpretation of supervised data structure exploration aimed at knowledge discovery. In Bio Med Informatics [Cd]. Basel: MDPI. https://doi.org/10.3390/biomedinformatics2040034
ISO-690 (author-date, English)LÖTSCH, Jörn und MAYER, Benjamin, 2022. A biomedical case study showing that tuning random forests can fundamentally change the interpretation of supervised data structure exploration aimed at knowledge discovery. Basel: MDPI.
Modern Language Association 9th editionLötsch, J., und B. Mayer. „A biomedical case study showing that tuning random forests can fundamentally change the interpretation of supervised data structure exploration aimed at knowledge discovery“. Bio Med Informatics, cd, MDPI, 2022, https://doi.org/10.3390/biomedinformatics2040034.
Mohr Siebeck - Recht (Deutsch - Österreich)Lötsch, Jörn/Mayer, Benjamin: A biomedical case study showing that tuning random forests can fundamentally change the interpretation of supervised data structure exploration aimed at knowledge discovery, Basel 2022.
Emerald - HarvardLötsch, J. und Mayer, B. (2022), A biomedical case study showing that tuning random forests can fundamentally change the interpretation of supervised data structure exploration aimed at knowledge discovery, Bio Med Informatics, Bd. , MDPI, Basel, verfügbar unter:https://doi.org/10.3390/biomedinformatics2040034.