American Psychological Association 6th edition

Lötsch, J., & Ultsch, A. [ca. 2022]. Enhancing explainable machine learning by reconsidering initially unselected items in feature selection for classification. In Bio Med Informatics [Cd]. Basel: MDPI. https://doi.org/10.3390/biomedinformatics2040047

ISO-690 (author-date, English)

LÖTSCH, Jörn und ULTSCH, Alfred, 2022. Enhancing explainable machine learning by reconsidering initially unselected items in feature selection for classification. Basel: MDPI.

Modern Language Association 9th edition

Lötsch, J., und A. Ultsch. „Enhancing explainable machine learning by reconsidering initially unselected items in feature selection for classification“. Bio Med Informatics, cd, MDPI, 2022, https://doi.org/10.3390/biomedinformatics2040047.

Mohr Siebeck - Recht (Deutsch - Österreich)

Lötsch, Jörn/Ultsch, Alfred: Enhancing explainable machine learning by reconsidering initially unselected items in feature selection for classification, Basel 2022.

Emerald - Harvard

Lötsch, J. und Ultsch, A. (2022), Enhancing explainable machine learning by reconsidering initially unselected items in feature selection for classification, Bio Med Informatics, Bd. , MDPI, Basel, verfügbar unter:https://doi.org/10.3390/biomedinformatics2040047.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.