Lötsch, J., & Ultsch, A. [ca. 2022]. Enhancing explainable machine learning by reconsidering initially unselected items in feature selection for classification. In Bio Med Informatics [Cd]. Basel: MDPI. https://doi.org/10.3390/biomedinformatics2040047
ISO-690 (author-date, English)LÖTSCH, Jörn und ULTSCH, Alfred, 2022. Enhancing explainable machine learning by reconsidering initially unselected items in feature selection for classification. Basel: MDPI.
Modern Language Association 9th editionLötsch, J., und A. Ultsch. „Enhancing explainable machine learning by reconsidering initially unselected items in feature selection for classification“. Bio Med Informatics, cd, MDPI, 2022, https://doi.org/10.3390/biomedinformatics2040047.
Mohr Siebeck - Recht (Deutsch - Österreich)Lötsch, Jörn/Ultsch, Alfred: Enhancing explainable machine learning by reconsidering initially unselected items in feature selection for classification, Basel 2022.
Emerald - HarvardLötsch, J. und Ultsch, A. (2022), Enhancing explainable machine learning by reconsidering initially unselected items in feature selection for classification, Bio Med Informatics, Bd. , MDPI, Basel, verfügbar unter:https://doi.org/10.3390/biomedinformatics2040047.