American Psychological Association 6th edition

Ultsch, A., & Lötsch, J. [ca. 2022]. Robust classification using posterior probability threshold computation followed by Voronoi cell based class assignment circumventing pitfalls of Bayesian analysis of biomedical data. In International Journal of Molecular Sciences [Cd]. Basel: MDPI. https://doi.org/10.3390 jms232214081

ISO-690 (author-date, English)

ULTSCH, Alfred und LÖTSCH, Jörn, 2022. Robust classification using posterior probability threshold computation followed by Voronoi cell based class assignment circumventing pitfalls of Bayesian analysis of biomedical data. Basel: MDPI.

Modern Language Association 9th edition

Ultsch, A., und J. Lötsch. „Robust classification using posterior probability threshold computation followed by Voronoi cell based class assignment circumventing pitfalls of Bayesian analysis of biomedical data“. International Journal of Molecular Sciences, cd, MDPI, 2022, https://doi.org/10.3390 jms232214081.

Mohr Siebeck - Recht (Deutsch - Österreich)

Ultsch, Alfred/Lötsch, Jörn: Robust classification using posterior probability threshold computation followed by Voronoi cell based class assignment circumventing pitfalls of Bayesian analysis of biomedical data, Basel 2022.

Emerald - Harvard

Ultsch, A. und Lötsch, J. (2022), Robust classification using posterior probability threshold computation followed by Voronoi cell based class assignment circumventing pitfalls of Bayesian analysis of biomedical data, International Journal of Molecular Sciences, Bd. , MDPI, Basel, verfügbar unter:https://doi.org/10.3390 jms232214081.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.