Treffer: Convergence rate of inexact augmented Lagrangian method with practical relative error criterion for composite convex programming.
Weitere Informationen
In this paper, we consider the composite convex optimization problem with a linear equality constraint. We propose a practical inexact augmented Lagrangian (IAL) framework that employs two relative error criteria. Under the first criterion, we demonstrate convergence and establish sublinear ergodic convergence rates. By incorporating the second criterion, we achieve sublinear non-ergodic convergence rates. Furthermore, we determine the total iteration complexity of the IAL framework by slightly relaxing these criteria. Numerical experiments on both synthetic and real-world problems are conducted to illustrate the efficiency of the proposed IAL method. [ABSTRACT FROM AUTHOR]
Copyright of Computational Optimization & Applications is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)