American Psychological Association 6th edition

Qu, Y., Cai, X., Liu, H., & Han, D. (2025). Convergence rate of inexact augmented Lagrangian method with practical relative error criterion for composite convex programming. Computational Optimization & Applications, 91(3), 1227-1261. https://doi.org/10.1007/s10589-025-00683-y

ISO-690 (author-date, English)

QU, Yunfei, CAI, Xingju, LIU, Hongying und HAN, Deren, 2025. Convergence rate of inexact augmented Lagrangian method with practical relative error criterion for composite convex programming. Computational Optimization & Applications. 1 Juli 2025. Vol. 91, no. 3, p. 1227-1261. DOI 10.1007/s10589-025-00683-y.

Modern Language Association 9th edition

Qu, Y., X. Cai, H. Liu, und D. Han. „Convergence Rate of Inexact Augmented Lagrangian Method With Practical Relative Error Criterion for Composite Convex Programming.“. Computational Optimization & Applications, Bd. 91, Nr. 3, Juli 2025, S. 1227-61, https://doi.org/10.1007/s10589-025-00683-y.

Mohr Siebeck - Recht (Deutsch - Österreich)

Qu, Yunfei/Cai, Xingju/Liu, Hongying/Han, Deren: Convergence rate of inexact augmented Lagrangian method with practical relative error criterion for composite convex programming., Computational Optimization & Applications 2025, 1227-1261.

Emerald - Harvard

Qu, Y., Cai, X., Liu, H. und Han, D. (2025), „Convergence rate of inexact augmented Lagrangian method with practical relative error criterion for composite convex programming.“, Computational Optimization & Applications, Vol. 91 No. 3, S. 1227-1261.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.