Treffer: zbMATH Open Web Interface contents unavailable due to conflicting licenses.

Title:
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Publisher Information:
Taylor \& Francis, Philadelphia, PA
Document Type:
Fachzeitschrift Article
File Description:
application/xml
DOI:
10.1080/10586458.2003.10504517
Accession Number:
edsair.c2b0b933574d..6d0f39da00df4a6684486dc16ab70d7b
Database:
OpenAIRE

Weitere Informationen

Summary: We study the \(1/2\)-complex Bruno function and we produce an algorithm to evaluate it numerically, giving a characterization of the monoid \(\hat{\mathcal{M}}=\mathcal{M}_T\cup \mathcal{M}_S\). We use this algorithm to test the Marmi-Moussa-Yoccoz Conjecture about the Hölder continuity of the function \(z\mapsto -i\mathbb{B}(z)+ \log U\!\left(e^{2\pi i z}\right)\) on \(\{ z\in \mathbb{C}: \Im z \geq 0 \}\), where \(\mathbb{B}\) is the \(1/2\)-complex Bruno function and \(U\) is the Yoccoz function. We give a positive answer to an explicit question of \textit{S. Marmi, P. Moussa} and \textit{J.-C. Yoccoz} [Commun. Math. Phys. 186, No. 2, 265--293 (1997; Zbl 0947.30018)].