Result: On an asymptotically sharp variant of Heinz's inequality
Annales Fennici Mathematici; Vol 30 Nro 1 (2005): Volume 30, 2005; 167-182
Further Information
The authors study quasiconformal automorphisms of the unit disk \(D\) and prove several results about this topic refining some of their earlier results e.g. in [\textit{D. Partyka, K. Sakan}, J. Comput. Appl. Math. 105, No. 1--2, 425--436 (1999; Zbl 0951.30017)]. In particular, they prove the following theorem. Given \(K \geq 1\,,\) let \(F\) be a \(K\)-quasiconformal and harmonic self-mapping of \(D\) satisfying \(F(0)=0 \,.\) Then the inequality \[ | \partial_x F(z) | ^2 + | \partial_y F(z)| ^2 \geq \frac{1}{2}\left(1+ \frac{1}{K}\right)^2 \max \{ \frac{4}{\pi^2}, L_K^2 \} \] holds for every \(z \in D \,.\) Some properties of the function \(L(K)\) are studied and the following explicit formula is given \[ L_K= \frac{2}{\pi} \int_0^u \frac{dt}{ \varphi_K(\sqrt{t}) \varphi_{1/K}(\sqrt{1-t}) } \,, u= \varphi_{1/K}(1/\sqrt{2})^2 \, , \] where \(\varphi_K:(0,1) \to (0,1)\) defined for \(K>1\), \(r \in (0,1), \;\;r' = \sqrt{1 - r^2},\) by \[ \varphi_K(r)=\mu^{-1}(\mu(r)/K);\;\mu(r)={\pi \over 2}{K(r') \over K(r)};\;K(r)=\int\limits_0^1 {dx \over \sqrt{(1-x^2)(1-r^2x^2)}} . \]