Treffer: Neural networks learning as a multiobjective optimal control problem

Title:
Neural networks learning as a multiobjective optimal control problem
Authors:
Source:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Mathware & soft computing; 1997: Vol.: 4 Núm.: 3
Publisher Information:
Universitat Politècnica de Catalunya. Secció de Matemàtiques i Informàtica, 1997.
Publication Year:
1997
Document Type:
Fachzeitschrift Article
File Description:
application/pdf; application/xml; text/html
Language:
English
Rights:
CC BY NC ND
Accession Number:
edsair.dedup.wf.002..a5830717f6fe0584645a6f2a44f9033e
Database:
OpenAIRE

Weitere Informationen

The supervised learning process of multilayer feedforward neural networks can be considered as a class of multi-objective, multi-stage optimal control problem. An iterative parametric minimax method is proposed in which the original optimization problem is embedded into a weighted minimax formulation. The resulting auxiliary parametric optimization problems at the lower level have simple structures that are readily tackled by efficient solution methods, such as the dynamic programming or the error backpropagation algorithm. The analytical expression of the partial derivatives of systems performance indices with respect to the weighting vector in the parametric minimax formulation is derived.