Result: Neural networks learning as a multiobjective optimal control problem
Title:
Neural networks learning as a multiobjective optimal control problem
Authors:
Source:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Mathware & soft computing; 1997: Vol.: 4 Núm.: 3
Universitat Politècnica de Catalunya (UPC)
Mathware & soft computing; 1997: Vol.: 4 Núm.: 3
Publisher Information:
Universitat Politècnica de Catalunya. Secció de Matemàtiques i Informàtica, 1997.
Publication Year:
1997
Subject Terms:
Classificació AMS::90 Operations research, Artificial neural networks, mathematical programming::90C Mathematical programming, Learning and adaptive systems in artificial intelligence, Minimax solution, 90 Operations research, mathematical programming::90C Mathematical programming [Classificació AMS], Classificació AMS::90 Operations research, mathematical programming::90C Mathematical programming, supervised learning, Multi-objective optimization, Aprenentatge automàtic, Programació (Matemàtica), multilayer feedforward neural networks, Sistemes de control intel·ligents, Multi-objective and goal programming, Supervised learning
Document Type:
Academic journal
Article
File Description:
application/pdf; application/xml; text/html
Language:
English
Access URL:
Rights:
CC BY NC ND
Accession Number:
edsair.dedup.wf.002..a5830717f6fe0584645a6f2a44f9033e
Database:
OpenAIRE
Further Information
The supervised learning process of multilayer feedforward neural networks can be considered as a class of multi-objective, multi-stage optimal control problem. An iterative parametric minimax method is proposed in which the original optimization problem is embedded into a weighted minimax formulation. The resulting auxiliary parametric optimization problems at the lower level have simple structures that are readily tackled by efficient solution methods, such as the dynamic programming or the error backpropagation algorithm. The analytical expression of the partial derivatives of systems performance indices with respect to the weighting vector in the parametric minimax formulation is derived.