Result: Robust Segmentation of COVID-19 Chest X-Ray Images: Analysis of Variant k-Means Based Clustering Algorithms
Further Information
Computer aided diagnosis (CADx) become one the most famous method in diagnostic medical field due to the high reliability and efficiency. Recently, the coronavirus disease (COVID-19) has become severe global pandemic. Particularly, the Chest X-ray (CXR) imaging has become an essentiality in COVID-19 detection. As a result, the convergence of CADx technology with Chest X-ray analysis has achieved great efficiency in COVID-19 diagnosis. Therefore, the research value of CADx in COVID-19 diagnosis is exceptionally high. This study aims to evaluate different k-means based clustering algorithms and identifying the one with the highest overall accuracy. First of all, 150 COVID-19 CXR open-source images are acquired from Kaggle and Github. All the images will be unified into a same image size with 1000*1000 pixels and quality during the image pre-processing. Next, the resized images are enhanced by the Modified Global Contrast Stretching (MGCS) enhancement method to increase the quality of images. Then, the traditional k-means, k-medians, k-medoids and fast k-means clustering methods have been implemented in the image segmentation. At the same time, five different numbers of clusters also tested out in this study. Lastly, all the segmented is proceeded to the segmentation performance based on sensitivity, specificity, accuracy, precision, recall and F-score. The result proves that the k-medoids clustering algorithm with 2 clusters archived the best overall segmentation performance as it obtained the highest sensitivity, accuracy, recall and F-score with 66.14%, 87.98%, 0.6614 and 0.7327.