Result: An involution for signed Eulerian numbers
Title:
An involution for signed Eulerian numbers
Authors:
Source:
Discrete Mathematics. 99:59-62
Publisher Information:
Elsevier BV, 1992.
Publication Year:
1992
Subject Terms:
signed Eulerian numbers, Symmetric functions and generalizations, classical Eulerian numbers, Exact enumeration problems, generating functions, Discrete Mathematics and Combinatorics, 0102 computer and information sciences, 0101 mathematics, Bernoulli and Euler numbers and polynomials, 01 natural sciences, Theoretical Computer Science
Document Type:
Academic journal
Article
File Description:
application/xml
Language:
English
ISSN:
0012-365X
DOI:
10.1016/0012-365x(92)90365-m
Access URL:
https://zbmath.org/63153
https://doi.org/10.1016/0012-365x(92)90365-m
https://dblp.uni-trier.de/db/journals/dm/dm99.html#Wachs92
https://www.sciencedirect.com/science/article/pii/0012365X9290365M
https://doi.org/10.1016/0012-365X(92)90365-M
https://miami.pure.elsevier.com/en/publications/an-involution-for-signed-eulerian-numbers
https://doi.org/10.1016/0012-365x(92)90365-m
https://dblp.uni-trier.de/db/journals/dm/dm99.html#Wachs92
https://www.sciencedirect.com/science/article/pii/0012365X9290365M
https://doi.org/10.1016/0012-365X(92)90365-M
https://miami.pure.elsevier.com/en/publications/an-involution-for-signed-eulerian-numbers
Rights:
Elsevier Non-Commercial
Accession Number:
edsair.doi.dedup.....7fe0362a004153d668d74e0347b80c2c
Database:
OpenAIRE
Further Information
zbMATH Open Web Interface contents unavailable due to conflicting licenses.