Result: Erdős–Ginzburg–Ziv theorem for dihedral groups of large prime index: Erdős-Ginzburg-Ziv theorem for dihedral groups of large prime index.
Title:
Erdős–Ginzburg–Ziv theorem for dihedral groups of large prime index: Erdős-Ginzburg-Ziv theorem for dihedral groups of large prime index.
Authors:
Source:
European Journal of Combinatorics. 26:1053-1059
Publisher Information:
Elsevier BV, 2005.
Publication Year:
2005
Subject Terms:
Document Type:
Academic journal
Article
File Description:
application/xml
Language:
English
ISSN:
0195-6698
DOI:
10.1016/j.ejc.2004.06.014
Access URL:
https://zbmath.org/2211444
https://doi.org/10.1016/j.ejc.2004.06.014
https://www.sciencedirect.com/science/article/abs/pii/S019566980400109X
https://core.ac.uk/display/82302263
https://dblp.uni-trier.de/db/journals/ejc/ejc26.html#ZhuangG05
https://www.sciencedirect.com/science/article/pii/S019566980400109X
https://doi.org/10.1016/j.ejc.2004.06.014
https://www.sciencedirect.com/science/article/abs/pii/S019566980400109X
https://core.ac.uk/display/82302263
https://dblp.uni-trier.de/db/journals/ejc/ejc26.html#ZhuangG05
https://www.sciencedirect.com/science/article/pii/S019566980400109X
Rights:
Elsevier Non-Commercial
Accession Number:
edsair.doi.dedup.....95afb3bf1b317b9f5e9967aab2190d4d
Database:
OpenAIRE
Further Information
Let \(G\) be a finite Abelian group of order \(n\) and Davenport constant \(d\). A well known result of W.~Gao states that any sequence of elements of \(G\) with length \(n+d-1\) has an \(n\)-subsequence summing to \(0\). The authors investigate generalizations to this result in the non-Abelian case.