Treffer: Complex Kergin interpolation

Title:
Complex Kergin interpolation
Source:
Journal of Approximation Theory. 64:214-225
Publisher Information:
Elsevier BV, 1991.
Publication Year:
1991
Document Type:
Fachzeitschrift Article
File Description:
application/xml
Language:
English
ISSN:
0021-9045
DOI:
10.1016/0021-9045(91)90076-m
Rights:
Elsevier Non-Commercial
Accession Number:
edsair.doi.dedup.....e2f7b1adb080391f20fe1aacbe8d6e0c
Database:
OpenAIRE

Weitere Informationen

Let \(D\subset\mathbb{C}^ n\) be a domain whose intersection with any complex line be either empty or a simply connected domain in \(\mathbb{C}\). Given \(m+1\) points \(p_ 0,p_ 1,\dots,p_ m\) in \(D\), then for each \(f\in{\mathcal O}(D)\) a polynomial \(q_ m(z)\) of degree \(m\) is constructed, who interpolates \(f\) at \(p_ 0,p_ 1,\dots,p_ m\). Hermite interpolating formula for the remainder \(f-q_ m\) is given. The result is a generalization of the corresponding result of Kergin concerning interpolation in \(\mathbb{R}^ n\).