Result: A constructive proof of Ky Fan's generalization of Tucker's lemma
Title:
A constructive proof of Ky Fan's generalization of Tucker's lemma
Authors:
Source:
Journal of Combinatorial Theory, Series A. 111:257-265
Publication Status:
Preprint
Publisher Information:
Elsevier BV, 2005.
Publication Year:
2005
Subject Terms:
Borsuk–Ulam theorem, Primary 55M20, 0102 computer and information sciences, 01 natural sciences, Fan's lemma, Theoretical Computer Science, Secondary 05A99, 52B70, FOS: Mathematics, Discrete Mathematics and Combinatorics, Mathematics - Combinatorics, Algebraic Topology (math.AT), Mathematics - Algebraic Topology, 0101 mathematics, Triangulations, Enumerative combinatorics, Tucker's lemma, Lusternik–Schnirelman–Borsuk theorem, Borsuk-Ulam theorem, Polyhedral manifolds, triangulations, Fan's Lemma, Fixed points and coincidences in algebraic topology, Computational Theory and Mathematics, Lusternik-Schnirelman-Borsuk theorem, Tucker's Lemma, Combinatorics (math.CO)
Document Type:
Academic journal
Article
File Description:
application/xml
Language:
English
ISSN:
0097-3165
DOI:
10.1016/j.jcta.2004.12.005
DOI:
10.48550/arxiv.math/0310444
Access URL:
http://arxiv.org/abs/math/0310444
https://zbmath.org/2210362
https://doi.org/10.1016/j.jcta.2004.12.005
https://core.ac.uk/display/82256617
https://scholarship.claremont.edu/hmc_fac_pub/676/
https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1681&context=hmc_fac_pub
https://www.sciencedirect.com/science/article/pii/S0097316505000026
https://dblp.uni-trier.de/db/journals/jct/jcta111.html#PrescottS05
https://ui.adsabs.harvard.edu/abs/2003math.....10444P/abstract
https://zbmath.org/2210362
https://doi.org/10.1016/j.jcta.2004.12.005
https://core.ac.uk/display/82256617
https://scholarship.claremont.edu/hmc_fac_pub/676/
https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=1681&context=hmc_fac_pub
https://www.sciencedirect.com/science/article/pii/S0097316505000026
https://dblp.uni-trier.de/db/journals/jct/jcta111.html#PrescottS05
https://ui.adsabs.harvard.edu/abs/2003math.....10444P/abstract
Rights:
Elsevier Non-Commercial
arXiv Non-Exclusive Distribution
arXiv Non-Exclusive Distribution
Accession Number:
edsair.doi.dedup.....e5e7a8e26e863514e18fe4e1fad79c5b
Database:
OpenAIRE
Further Information
We present a constructive proof of Ky Fan's combinatorial lemma concerning labellings of triangulated spheres. Our construction works for triangulations of $S^n$ that contain a flag of hemispheres. As a consequence, we produce a constructive proof of Tucker's lemma that holds for a larger class of triangulations than previous constructive proofs.
related work at http://www.math.hmc.edu/~su/papers.html